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Geometric quantisation of the MIc-Kepler problem 

Ivailo M Mladenovt and Vassil V TsanovSO 
+ Central Laboratory of Biophysics, Bulgarian Academy of Sciences, BI 21, 1113 Sofia, 
Bulgaria 
i: Department of Mathematics, University of Sofia, Bld A lvanov 5, 1126 Sofia, Bulgaria 

Received 18 May 1987 

Abstract. The geometric quantisation scheme is applied to the compact Kaehler orbit 
manifolds of the modified Kepler problem. Thus we obtain the quantisation of the magnetic 
charge and energy spectrum of the corresponding quantum problem. A new regularisation 
of the standard Kepler problem is presented. 

The interplay between geometric quantisation and reduction of Hamiltonian systems 
in the sense of Marsden and Weinstein (1974) has been discussed recently by many 
authors. Thus Guillemin and Sternberg (1982) obtain compatibility of quantisation 
and reduction in the case when the symplectic manifold to be reduced is a compact 
Kaehler manifold. At the other extreme, the reduction-quantisation relationship within 
the category of cotangent bundles is treated, e.g., by Puta (1984) and Gotay (1986). 
On the other hand, concrete quantum spectra of classical Hamiltonian systems (the 
hydrogen atom, the harmonic oscillator, cf Czyz (1979)) were obtained when a 
cotangent bundle (i.e. a classical phase space) is reduced to a compact Kaehler manifold 
where geometric quantisation gives the strongest implications. 

In the present paper, we give a further example of the above procedure. We apply 
geometric quantisation (via reduction) to the Hamiltonian system: 

(T*d3 ,  a,, H,) (1) 

where 

T*d3 = ((4, p )  E R 3  x R3:  q # 0} 

R, =dO+a,  0 = ZP, dq, (+)I = (-CL/ 1913)EI,kql dq, A dq, (2) 

H, = ~ I P I 2 + ~ I I ~ / l q l 2 - a / l q i  a, p E R, cr > 0. (3 )  

The Hamiltonian system (1) describes the motion of a charged particle in the presence 
of a Dirac monopole field B, = -pq/1qI3, a Newtonian potential a/Iql, and acentrifugal 
potential pz/21q12. Using a vector potential this system has been studied by McIntosh 
and Cisneros (1970) and here, following Iwai and Uwano (1986) whose work has 
influenced substantially the present study, we adopt the name MIc-Kepler problem. 
I t  is known that the energy level submanifolds H , ' ( E )  consist only of closed orbits 
for E < 0. When p = 0 we have the standard Kepler problem, which has been quantised 
geometrically by Simms (1973) and Mladenov and Tsanov (1985) in higher dimensions. 

5 Partially supported by Contract 54/25.03.1987 of the Committee for Science. 
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In this case, even for E < O ,  there are some non-closed orbits (i.e. there is no U ( 1 )  
action). To circumvent this difficulty use has to be made of some regularisation 
procedure (see Moser 1970, Kummer 1982, Cordani 1986, Vivarelli 1986). In the 
present paper we regularise in a different way (see the remark after the proposition). 
We denote by OF( E )  the orbit manifold of the flow of the Hamiltonian H on the level 
set H ; ' ( E ) .  The level sets described in statement ( i i )  of theorem 1 below consist of 
fixed points of the flow. 

Theorem 1. Let E < O ,  A = m. Then 
(i) if A ] p ] < 2 a  then O F ( E ) = H , ' ( E ) / U ( 1 ) - P 1 x P '  
(i i)  if Alpl=2a then O w ( E ) = H ; ' ( E ) / U ( l ) - P '  
(iii) if A l p / > 2 a  then H L 1 ( E )  = 4. 

Moreover, the reduced symplectic form on Ow ( E )  is 

where 

for any pair of non-homogeneous coordinates (11, 12) on PI x P'  

Theorem 1 reduces the quantisation of the Mlc-Kepler problem to the geometric 
quantisation of a compact Kaehler manifold P' x PI ( P I ) .  Applying the geometric 
quantisation scheme to the orbit manifold OF ( E )  amounts in quantum mechanical 
terms to the transition from the Schrodinger to the Heisenberg picture and leads to 
the next theorem. 

Theorem 2. The spectrum of the MIc-Kepler problem (1) ( a  and p fixed) consists of 
the energy levels 

with multiplicities 
( 6 )  EN = - a 2 / 2 N 2  

m ( E N ) =  N 2 - p 2 .  ( 7 )  

N = IpL( + 1 ,  IpI + 2 ,  * . . 

Theorems 1 and 2 will be proved later. We remark that the above method of quantisation 
was initiated by Simms (1973). For a detailed exposition of geometric quantisation 
see Simms and Woodhouse (19761, Sniatycki (1980) and Tuynman (1985). 

We start with the symplectic manifold 
T * R 4  = {(x, y )  E R4 x R4:  x # 0 )  

with the standard symplectic form 

For an arbitrary choice of a positive constant A, we introduce the complex coordinates 
(which are a slight modification of the coordinates used by Iwai and Uwano (1986)) 

f i = z d y , A d x ,  j = 1,2,3,4.  ( 8 )  

z ,  = Ax, +y2+i(Ax2 - y l )  = A(x, fix,)  - i(yl  +iy,) 
z2 = Ax,+y,+ i(Ax, -y , )  = A (x3 + ix,) - i(y3 + iy,) 
z3 = Ax, - y 2  - i (  Ax2 + y , ) = A (x, - ix,) - i(y, - iy,) 
z ,  = Ax, - y, - i (Ax, + y 3 )  = A ( x3 - ix,) - i(y, - iy,). 
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Thus T*R4= C4\D where 

Obviously our form R is a multiple of the standard Kaehler form on C4 and, more 
precisely, 

D = { z €  C4: z l= -23 ,~2=-4}*  (9) 

1 i 
R = - dz A d2 = - 

4A 4A 
dzj A dZ, . 

We introduce three Hamiltonian functions on T*R4. First the Hamiltonian of the 
conformal Kepler problem 

H=(Iy12-8a)/8(x1’ a fixed positive constant (11) 

K = f(A2IxI2+ (y(’) = 121’ = zjZj (12) 

second the Hamiltonian of a harmonic oscillator 

and third a moment Hamiltonian 

M(x, Y )  = 8 x 1 ~ 2  - X ~ Y I  + X3Y4 - X 4 ~ 3 )  = ( I Z I  I’ + Iz212 - 1231’ - Iz412)/ 8 A .  (13)  
The following two lemmas are known but we include some hints to proofs for 

completeness. 

Lemma 1 .  Let E <0,  A = m. Then 

H - ’ ( E )  = K-’(4a).  (14) 
Moreover, the flows defined by the Hamiltonians H and K on the energy hypersurfaces 
(14) coincide up to a monotone change of parameter. 

Pro05 Obviously we have 

41xI2(H + A 2 / 8 )  = K -4a  

which proves (14). Also, the corresponding Hamiltonian vector fields X H ,  X K ,  
restricted on the level sets (14) satisfy 

41X(’xH = XK (16) 
which proves the lemma. 

We remark that the Hamiltonians K and M as well the symplectic form R are well 
defined on the manifold 

C4 = C4\{O} 2 T*R4. (17) 
We denote by K , ,  M, ,  the flows of the Hamiltonian systems ( K ,  R, C4), ( M ,  R, C4) 
respectively. 

Lemma 2. For any Z E  C4, s, t~ R, we have 

K,z  = (eiA‘zl, eiA‘zz, eiA‘23, eiA‘z4) (18) 

In particular, the flows of all three Hamiltonians H, K ,  M,  commute where defined. 
z , ,  e - i r /2~4) .  (19) M~~ = ei.y/2z2, e-is/2 

Proof: Equations (18) and (19) are obtained by straightforward computation. The last 
statement of the lemma is a consequence of (18), (19) and lemma 1. 



5868 I M Mladenov and V V Tsanov 

By lenima 2, the flows K, ,  M, define a symplectic action of the torus U (  1) x U (  1) on 
the manifold C4. We denote by 

J :  C4+ u*( l )  x U*( 1 ) =  R 2  

J ( z )  = ( M ( z ) ,  K ( z ) ) .  

(20) 

the moment map of this action. Explicitly we have 

We note that the set D defined in formula (9) is invariant with respect to the U(1) 
action defined by the Hamiltonian M (19). Thus T * R 4  is also invariant, as well as 
the Hamiltonian H, so we may reduce the Hamiltonian system ( T * k 4 ,  Cl, H )  with 
respect to the U(1) action M , .  The result is the following proposition established by 
Iwai and Uwano (1986). 

Proposition. Let p E R. Then 

M- ' (p ) /  U (  1) = T*R' 

Moreover, the reduction of the form 
the result of reduction is the MIc-Kepler problem (1). 

and the Hamiltonian H give a, and H,,  i.e. 

Remark. By lemma 1 we see that the orbits of the U(1) action K ,  are closures of the 
orbits of the Hamiltonian H, considered as subsets of C4. We see also from (9) and  
(13) that 

D c M - ' ( 0 )  c C4 (22) 
i.e. all non-closed orbits of the conformal Kepler problem are included in the invariant 
set M- ' (O)  n T * R 4  (we consider, of course, only orbits lying in the negative-energy 
hypersurfaces of H ) .  Thus we see that for p # 0, the Hamiltonian system ( T * R 3 ,  
H,, a,) has only closed orbits. For p = 0, we have the standard Kepler problem and  
some non-closed orbits (collisions with the central body). We regularise the lifted 
problem (the flow of the conformal Kepler problem on T * d 4 )  if we consider, instead 
of H, by lemma 1, the Hamiltonian K and extend T * R 4  to C'. It is easy to see from 
(9) and (16) that each orbit of the action K ,  has at most two common points with the 
complementary set D\{O>. In particular, no orbit of the K ,  action is contained in 
C4\ T*R4 = D\{O}, and we have a one-to-one correspondence between orbits of the 
Mlc-Kepler problem on the energy hypersurface H = E, E < 0, and orbits of the torus 
action U(1) x U(1) defined by (18) and (19) on J - '  ( ~ , 4 a ) .  We have proved the 
following lemma. 

Lemma 3. ~ ~ ( E ) = J - ' ( p L , 4 a ) / U ( l ) x  U(1).  

Proofoftheorem 1 .  Because of lemma 3, we have to prove that J - ' ( p ,  4 a ) /  U (  1) x U(1) 
is diffeomorphic to 

( i )  P' x P' if A < 2a 

(ii) P' if A / w /  = 2 a  

( i i i )  4 otherwise. 
Using (12) and (13) we see that the system, K = 4a ,  M = p, is equivalent to 

= 4 ( 2 a  +Ap)  I z 3 / * + 1 ~ ~ 1 ' = 4 ( 2 ~ ~  -Ap)  (23 )  
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whence [ ;,xS3 w h e n A / p . / < 2 a  
J- ' (p ,  4 a )  = s3 whenAlpI=2a  

when Alp1 > 2a .  

Define a projection (two Hopf maps) 

p : s 3 x  S3' PI x P' 

P(ZI, z2, z3 3 24) = ((z1,z2), (z3,z4)) 

by 

(25) 

where ( z, , z2), ( z,, z4) are homogeneous coordinates on PL x PI. By lemma 2, the map 
p is exactly the factor map  

J - l ( p ,  4 a )  ' J - I ( p ,  4 a ) /  U( 1 )  x U(1). 

This proves statement (i) of theorem 1 .  Obviously, the restriction of the projection p 
to the non-zero factor also gives the factor map needed to prove the statement (ii). 
The statement (iii) is trivial. 

Anyway, the case A lp I = 2 a  deserves some comment. We need to consider the sets 

D ' = { z E  C4; Iz112+/zz\2=O} D"={zE C4; / z , / * + / z ~ / ~ = O } .  (26) 

The action of U( 1 )  x U( 1 )  on C4 defined by (18) and (19) is free exactly on C4\( D'u 
D").  On each of the sets D', D", the actions (18) and (19) coincide u p  to a change 
of parameter. Thus the orbits of the Mlc-Kepler problem, which are images of K ,  
orbits contained in D' or  D" under reduction with respect to M,,  shrink to single 
points. Note that (D 'u  D") n M-'(O) = 4. An easy calculation yields that, for any 
p # 0 the energy value E, such that = 2a, corresponds to a minimum of the 
potential function. Thus the statement of our theorem for the case Alp.( = 2a means 
that, in these conditions, we have a 2-sphere of stationary points. We note also that 
D'u D" are exactly the points of c4 where the moment J degenerates. 

We have to compute the reduced symplectic form. In non-homogeneous coordinates 

( i l ,  5 r )  = ( Z * / Z l  9 z4/z3) 

P (z , , z r , z , , z4 )=(51 , i r ) .  (27) 

on PI x PI, the map p is given by 

By the reduction theorem we have 

p*IZ,(E)=RiS3xS) 

where S 3  x S 3  are exactly the spheres defined in (23). Thus 

= f 4 S 3 X S 3  

because of (10) and (23). Theorem 1 is proved. 
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We recall here only the relevant facts from the geometric quantisation scheme for a 
compact Kaehler manifold ( X ,  U )  with a polarisation given by the complex structure. 
The quantum conditions on the form w amount to 

(l/27r)[o]-;cI(X)€ H 2 ( X ,  2).  (28) 

The quantum states of the system are identified with the holomorphic sections of a 
line bundle L over X such that 

c , ( L )  = (1/27r)[w]-fc,(X). (29) 

Moreover, in order that the space of quantum states Ho(X, L )  is not empty, we must 
have 

Proof of theorem 2. Let E < 0. Then in order that E be a quantum level, the correspond- 
ing form R,(E) (see (4)) must satisfy conditions (28)-(30). We have (Griffiths and 
Harris 1978): 

c , ( P 1 x P ' ) = 2 ( w , + w , )  (31) 

H * ( P '  x PI,  Z )  = zoz. 
where wI, w, are defined in ( 5 )  and [ w , ] ,  [w2] generate 

Equations (28)-(31) yield 

( 1 / 2 ~ ) R , (  E )  = N,wl + N ~ W ,  

for some integers N I ,  N, 2 1. We combine (4) and (32) to obtain 

2a+Ap = AN, 

~ c ~ - A / . L = A N ~  

whence 

P=f(NI-N,)  A =4a/(  NI + NZ). (33) 

It is (at least mathematically) sensible to prequantise also the orbit manifolds when 
A Ip 1 = 2a. It is curious to remark that the procedure gives exactly the quantisation of 
the magnetic charge p which was obtained independently by the above argument (see 
(33)) and also may be obtained if we apply, as did Ryder (1980) and  Crampin (1981), 
prequantisation to the symplectic form R, of the original MIC-Kepler phase space. 
Note that the singular momentum levels d o  not occur at all for the standard Kepler 
problem p = 0. Let us take, e.g., p > 0, Ap = 2a. Then Hi'( E ) /  U(1) = PI and we 
have H * ( P ' )  =Z[wl], c l (P1)=2[o , ]  whence (4), (28)-(30) give p = f N  for some 
positive integer Nnl̂ z 1 .  

Introducing a new non-negative (half)-integral variable N = + ( N I  + N,), we obtain 
NI = N +p, N, = N -p, where N 3 /pi+ 1, and finally obtain the energy spectrum of 
the Mic-Kepler problem in the form 

E N  = -a'/2N2 N=IpI+l , lp I+2  , . . . .  (34) 
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The multiplicities of these energy levels, m( EN), coincide with the dimensions of the 
spaces of holomorphic sections of the line bundles LN over PI x PI. If LN + PI x PI 
is such a quantum bundle and 

then, by the Riemann-Roch-Hirzebruch theorem for compact complex surfaces (Hirze- 
bruch 1966) and the Kodaira vanishing theorem (Griffiths and Harris 1978) we have 

m(EN) =dim Ho(PL x PI, LN) = NI N2 = N 2  - p 2 .  (36) 
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